Do Low Concentrations of Hexavalent Chromium in Drinking Water Pose a Cancer Hazard?

Results of ACC's Cr(VI) Mode of Action Study

Deborah Proctor

Chad Thompson, Mark Harris, Mina Suh, Laurie Haws, Chris Kirman and Sean Hays

ToxStrategies, Inc. and Summit Toxicology

November 2012

Strategies

Research Project funded by the Cr 6 Panel of the American Chemistry Council

Presentation Overview

- Background regarding Cr(VI) toxicology and the Mode of Action (MOA) Research Project
- Research findings that inform the risk assessment for relevant drinking water exposure (i.e., by humans at low levels)
- How kinetic models¹ and "mode of action" data are used in cancer risk assessment to set safe levels
- Calculation of Drinking Water Equivalent Level (DWEL) protective of intestinal cancer

¹Physiologically-based pharmacokinetic (PBPK) models

Cr(VI) MOA Study Research Team

Universities

George Washington University Medical Center Michigan State University University of Cincinnati Medical Center Duke University Medical School Res

Risk Assessors and Modelers

3

Analytical Laboratories

Applied Speciation Brooks Rand Laboratory Environmental Standards

Research Laboratories

Experimental Pathology Laboratories Southern Research Institute National Center for Toxicological Research ThermoFisher

National Toxicology Program (NTP) Study Results for Cr(VI) and Cr(III)

NTP Cr(VI) drinking water study

- Mice and rats consuming 5,000 180,000 µg/L (ppb) Cr(VI) as sodium dichromate dihydrate (SDD)
- Rare tumors appeared late in the study

A CONTRACT

B6C3F1 mouse

- Mice: adenomas and carcinomas of small intestines
- Rats: squamous cell carcinoma in oral cavity

NTP Cr(III) drinking water study

• No significant effects observed in either species

Strategies

Cr(VI) MOA Research Project Background

- The Cr(VI) MOA research project was developed using EPA Guidance
- Provides information as to <u>why</u> tumors occurred in rodents
- Provides information on the differences between rodents and humans with regard to <u>internal</u> dose
- Develops the models and data needed to do a State-ofthe-Art Risk Assessment

Comparison of NTP Doses to Human Exposures

Stomach Reduction Kinetics

Tox Strategies_

Stomach Reduction Capacity is Exceeded At Carcinogenic Doses in Rodents

Oxidative Stress and Chronic Toxicity in Intestinal Villi

Tox Strategies.

Biochemical and Genomic Responses to Oxidative Stress

- Significant decreases in reduced to oxidized glutathione in mouse duodenum and jejunum
- Activation of genomic response to oxidative stress

Toxicity in Villus & Regeneration of New Cells in Crypt

At High Doses:

- Expanded Crypt Area, Blunted Villi
- Damage at villi tips

15

Does Cr(VI) Cause DNA Mutations in the Crypt or Do Tumors Occur by Spontaneous Replication Error?

Tox Strategies

Toxicity and DNA Damage to Cells in the Duodenal Crypt

- Mitotic Index: Percentage of Cells Undergoing Division
- Apoptotic Index: Percent of cells undergoing apoptosis (programmed cell death)
- Micronuclei: Total number of cells with an extra smaller nucleus indicating broken chromosomes

Measured in 10 fully intact crypts per animal, 5 animals per dose

Strategies

Experimental Pathology Laboratories

No Toxicity to Cells in the Duodenal Crypt (Mice Day 91) Cr(VI) Drinking **Total Number of** Water Mitotic Index (%) **Apoptotic Index (%)** Micronuclei (mg/L)0.47 1.43 ±1.17 0 ± 0.22 0 0.1 2.28 ± 1.07 1.0 ± 0.47 0 ±0.4 2.36 +0.6840.5 1 No Effect on Normal **Cell Generation or** 5 3.08 ± 0.46 0.7 **Cellular Death** ± 0.3 20 2.46 ± 0.76 0.5 2.72 60 0.84 ± 0.96 ±0.97 0 2.11 0.67 180 ± 1.09 ± 0.33 0

Purple for Carcinogenic Doses

Mitotic and apoptotic indices are percent of mitotic and apoptotic cells per total cells evaluated

Data represent total number of cells evaluated in 10 fully intact crypts per

Tox Strategies

animal, 5 animals per dose group

Experimental Pathology Laboratories

18

No DNA Damage in Duodenal Crypt (Mice Day 91)

Cr(VI) Drinking Water (mg/L)	Mitotic In	Mitotic Index (%)		Index (%)	Total Number of Micronuclei		
0	1.43	±1.17	0.47	±0.22		0	
0.1	2					0	
1		o Evide	nce of D			0	
5	Gan	nage in Is with	Prolifer	ation		0	
20	2	Res	ponse			0	
60	2		-		1	0	
180	2.11	±1.09	0.67	±0.33		0	

Purple for Carcinogenic Doses

Mitotic and apoptotic indices are percent of mitotic and apoptotic cells per total cells evaluated

Data represent total number of cells evaluated in 10 fully intact crypts per

Tox Strategies

animal, 5 animals per dose group

Experimental Pathology Laboratories

19

Mutation Analysis

- When DNA is damaged, cells die, DNA is correctly repaired, or more rarely it is repaired with an incorrect code
- If the incorrect code is in an important gene sequence (an oncogene), the cells can start to divide uncontrollably, and this is called mutagenesis
- Thus, there is an important distinction between genotoxicity (damage to DNA), and mutagenesis which is a heritable change in the DNA sequence
- We looked for a specific mutation in an oncogene (K-Ras) in mouse intestinal tissue with a very sensitive method at doses that cause hyperplasia
- K-Ras codon 12 is commonly mutated in intestinal cancers
- K-Ras codon 12 GAT mutation is also a "reporter gene" for mutations in other parts of the DNA sequence
- Mutation data, such as this, are EPA's highest tier of data for assessing whether a chemical acts by a mutagenic MOA

George Washington University Medical Center and National Center for Toxicological Research

21

K-Ras Mutations: Comparison with Benzo(a)pyrene (Mouse Duodenum, Day 91)

- K-Ras Codon 12 GAT mutations increased with BaP dose and adduct formation in mouse lung (Meng et al. 2010)
- Evidence for a Mutagenic MOA for BaP in lung
- High background rate of K-Ras mutations in mouse small intestine as compared to lung and other tissues (Mutant fraction of ~10⁻³ in intestine and ~10⁻⁶ in lung)

MOA Study Findings (Mice)

Significant change	Cr6 Drinking Water Concentration (mg/L)						
Day 91 Duodenum	0.1	1.4	5	20	60	180	
Cr in duodenum	-	-	1	 Image: A start of the start of	1	 Image: A start of the start of	
Oxidative Changes	-	-	\checkmark	\checkmark	\checkmark	\checkmark	
Gene Changes	-	-	\checkmark	\checkmark	\checkmark	\checkmark	
Villus toxicity	-	-	-	\checkmark	\checkmark	<u>✓</u>	
Crypt proliferation	-	-	-	-	\checkmark	\checkmark	
Crypt DNA damage	-	-	-	-	-	-	
K-Ras mutation (Codon 12 GAT)	-	-	-	-	-	-	

Underlined checks indicate significant changes at day 8 as well, Cr concentrations not measured at day 8.

Tox Strategies.

MOA Study Findings (Mice)

Significant change	Cr6 Drinking Water Concentration (mg/L)						
Day 91 Duodenum	0.1	1.4	5	20	60	180	
Cr in duodenum			1	1	1	1	
Oxidative Changes			1	\checkmark	\checkmark	<u> </u>	
Gene Changes			\checkmark	\checkmark	\checkmark	<u> </u>	
Villus toxicity	No Effect in		-	\checkmark	\checkmark	<u> </u>	
Crypt proliferation	Dose Range		-	-	\checkmark	\checkmark	
Crypt DNA damage	Decertainge		-	-	-	-	
K-Ras mutation (Codon 12 GAT)			-	-	-	-	

Underlined checks indicate significant changes at day 8 as well, Cr concentrations not measured at day 8.

Tox Strategies.

MOA Study Findings (Mice)

Significant change	Cr6 Drinking Water Concentration (mg/L)					
Day 91 Duodenum	0.1	1.4	5	20	60	180
Cr in duodenum	-	-	1	1	1	1
Oxidative Changes	-	-	\checkmark	\checkmark	\checkmark	<u> </u>
Gene Changes	-	-	\checkmark	\checkmark	\checkmark	\checkmark
Villus toxicity	-	-	-	\checkmark	\checkmark	\checkmark
Crypt proliferation	-	-	-	-	1	\checkmark
Crypt DNA damage <i>K-Ras</i> mutation	No Mutagenesis, No Basis for Linear Low Dose Extrapolation					
Underlined checks indicate significant changes at day 8 as well, Cr concentrations not measured at day 8.						

Use of PBPK Models

. Tox Strategies_

PBPK Models Can Predict Internal Dose by Intestinal Segment

Results in a More Robust Dose-Response Data Set!

Model Application to Humans: Importance on Exposure Time and Diurnal Variation

Because Cr(VI) reduction is pH-dependent, exposure events A & B will result in different internal doses even if external doses are the same

Strategies

Summit Toxicology

32

Model Application for Risk Assessment: Accounting for Age-Dependent Changes in Gastric pH

The lifetime average weighted dose (a time-weighted average) is less than 2-fold greater than the adult average daily dose

Using Mode of Action and PBPK Models in Risk Assessment

Tox Strategies.

EPA's Draft Risk Assessment with a Mutagenic MOA Compared with That Considering The New Data

Risk Assessment Terms

Point of Departure (POD) Lower confidence level on 10% response level Uncertainty Factor (UF) 3-10 Multipliers Used to Account for uncertainty and unaccounted for variability Reference Dose (RfD)

Example Dose Response Curve

An RfD is defined by the U.S. EPA as "an estimate (with uncertainty spanning perhaps an order of magnitude) of a daily exposure to the human population (including sensitive subgroups) that is likely to be without an appreciable risk of deleterious effects during a lifetime."

Hyperplasia is Key Event Preceding Cancer (NTP 2-year Data)

Accounts for pH variability at all life stages

RfD = Reference Dose (mg/kg-day)

LADD = Lifetime Average Daily Dose (mg/kg-day) in Human

UF = Uncertainty Factors

People on Proton Pump Inhibitors have ~3-fold higher dose * Variations in Water Consumption can result in up to a higher dose by ~2-fold

RfD Can Be used To Calculate a DWEL

Drinking Water Equivalent Level (DWEL) = (RfD x BW) \div IR

DWEL = Drinking Water Equivalent Level

RfD = Reference Dose for a Lifetime exposure including sensitive subpopulations

IR = Ingestion Rate (2 L/day)

BW = Body Weight (70 kg)

Resulting DWEL is supportive of the current MCL (~100 ppb)

rategies

Average Cr(VI) Detected in Drinking Water¹

- Background is around 1-5 ppb
- DWEL is higher than background
- Current Standards are protective
- No risk at normal background exposures, even for sensitive subpopulations

Summary Conclusion

- Research provides strong support for a cytotoxic MOA
 - At non-cytotoxic doses, this MOA is not operable
- This MOA is consistent with the notion that there is an exposure level that does not pose an increased cancer risk
- PBPK models are needed for risk assessment
 - Differences in internal dose between species (mice and humans)
 - Extrapolation between the high doses that caused tumors in rodents and environmentally relevant drinking water exposures
- DWEL is consistent with current Drinking Water Standards

Questions and Discussion

